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Abstract—Accurate segmentation of brain tumor from MR
image is crucial for the diagnosis and treatment of brain cancer.
We propose a novel automated brain tumor segmentation
method based on a probabilistic model combining sparse
coding and Markov random field (MRF). We formulate the
brain tumor segmentation task as a pixel-wise labeling problem
with regard to three classes: tumor, edema and healthy tissue.
For each class, dictionary learning is performed independently
on multi-modality gray scale patches. Sparse representation is
then extracted based on a joint dictionary which is constructed
by combing the three independent dictionaries. Finally, we
build the probabilistic model aiming to estimate maximum
a posterior (MAP) probability by introducing the sparse
representation into likelihood probability and prior probability
using the Markov random field (MRF) assumption. Compared
with traditional methods, which employed hand-crafted low
level features to construct the probabilistic model, our model
can better represent the characteristics of a pixel and its rela-
tion with neighbors based on the sparse coefficients obtained
from the learned dictionary. We validated our method on
the MICAAI 2012 BRATS challenge brain MRI dataset and
achieved comparable or better results compared with state-of-
the-art methods.
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I. INTRODUCTION

Brain tumor is the abnormal tissue proliferation which

causes the increase of intra-cranial pressure, resulting in the

damage of central nervous system, and endangers the lives of

patients. Reliable segmentation of brain tumors from Mag-

netic Resonance (MR) images can aid surgical planning and

therapy assessment during clinical treatment [1]. Currently

standard manual segmentation is time consuming and suffers

from inter- and intra- rater variability with limited reproduc-

tion. Therefore, automatic and semi-automatic brain tumor

segmentation methods play an increasingly important role

in modern medical image analysis. However, this remains

a challenging problem due to the unpredictable appearance,

location, shape, size of tumor and the overlapping intensity

range of the tumor and healthy tissues.

In the past decades, a variety of brain tumor segmen-

tation algorithms have been proposed. Early investigations

Figure 1. Examples of various modalities of brain tumor images. Form
left to right are: Flair, T1, T2, T1C and our segmentation result (white and
gray parts represent the tumor and edema, respectively).

employing active contours and geometric deformable models

suffer from the inhomogeneity, unpredictable location and

complex structural appearance of brain tumor [2]. Recently,

probability-based [3] and graph-based [4] methods have

been proposed to meet these challenges. Unfortunately, the

hand-crafted low level features employed in these methods

are still insufficient to deal with the unpredictable appear-

ance of brain tumor. Machine learning-based methods [5]

are then proposed, attempting to exploit high level features

generated from training samples. However, these methods

tend to neglect the spatial constraints, as they usually directly

adopt the output of their classifier as the segmentation mask,

which degrades the segmentation performance.

In this paper, we build machine learning strategies into a

graph model so that the spatial constraints can be sufficiently

considered. We formulate the brain tumor segmentation

task as a pixel-wise labeling problem with regard to three

classes: tumor, edema and healthy tissue. Our automatic

segmentation model includes three steps: multi-modality

dictionary learning, sparse coding from a joint dictionary and

maximum a posterior (MAP) probabilistic model construc-

tion. First, we learn a collection of overcomplete atoms by

online dictionary learning based on multi-modality brain MR

images. Second, given a target image, sparse representation

is acquired from the learned joint dictionary. Finally, the

sparse representation is adopted for building the likelihood

probability density and Markov Random Field (MRF) is

used to construct a probabilistic graph. The MAP prediction

is taken as the output label. Compared with traditional

methods, which employed hand-crafted low level features

to construct the probabilistic model, our model can better
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represent the characteristics of a pixel and its relation with

neighbors based on the sparse coefficients obtained from

the learned dictionary. In addition, the sparse representation

calculated from multiple modalities should be more powerful

than representations from single modality in capturing the

complex structure of brain tumor. Experimental results show

that our method is comparable to or better than state-of-the-

art approaches.

II. METHOD

A. Multi-modality Dictionary Learning

We first independently trained three dictionaries for the

three classes of tissue respectively. For each dictionary,

we get training samples from four modalities: FLAIR, T1-

weighted (T1), T2-weighted (T2) and contrast enhanced T1-

weighed (T1C). In this way, the learned dictionary can

benefit from the complementary information of multiple

modalities. For example, the T1 weighted modality edema

and non enhancing tumor areas share the range of intensities

with the gray matter whereas the FLAIR modality can

separate the edema with a hype-intense signal around the

tumor, as shown in Fig 1. Specifically, we sampled small

patches from the four modalities and construct a sample

vector x by concatenating the four smaller vectors which

are reshaped from the four patches.

When training a dictionary, with a given set of N training

samples X = [x1, ...,xn, ...,xN ],xn ∈ R
M , we aim to

solve the following optimization problem, where the �1-

norm constraint helps to yield a sparse solution α:

min
D, α∈RK×N

1

N

N∑
n=1

(
1

2
‖xn −Dαn‖22 + λ‖αn‖1

)

s.t. ‖dk‖22 ≤ 1, ∀ k = 1, ...,K. (1)

where D ∈ R
M×K is the learned dictionary whose column

vector dk is constrained to prevent D from being arbitrarily

large or equivalently to prevent α from being arbitrarily

small, and αn, corresponding to the n-th column of matrix

α, is the sparse coefficients vector of the n-th input xn.

When training the dictionary, we need to jointly minimize

the objective function (1) over D and α. This non-convex

optimization problem can be converted into two convex

problems with respect to D or α by fixing the other. In

our implementation, we adopt the online dictionary learning

algorithm to train the dictionary [6].

We obtain three dictionaries Dl ∈ R
M×K (l = T,E,B)

which are corresponding to the tumor, edema and back-

ground healthy tissue respectively. Then, the three dic-

tionaries are combined to construct the joint dictionary

DJ = [DT ,DE ,DB ] ∈ R
M×3K which is used for seeking

sparse representation (or equivalently sparse coding) towards

a new test sample.

B. Sparse Representation of Joint Dictionary

Given the joint dictionary DJ , we can represent a given

new test patch with sparse linear combination of the atoms.

We denote the test sample as xi ∈ R
M and the sparse

coefficients vector as βi ∈ R
3K . The sparse representation

of a test sample is obtained by minimizing the following

objective function over βi

min
βi∈R3K

1

2
‖xi −DJβi‖22 + λ‖βi‖1. (2)

where the λ is used to balance the sparsity of the solution

and fidelity of the approximation to xi. Different from

the dictionary learning stage, here we only minimize the

objective over βi with the joint dictionary DJ fixed. We

employ the LARS-Lasso algorithm [7] to solve this �1-norm

regularization problem.

C. MAP Model Based on Sparse Representation

Given the test sample xi (i = 1, ..., I), we can get

its sparse representation βi based on the joint dictionary

DJ . We then extract the coefficients with respect to each

class for classification. More specifically, for each potential

class li ∈ {T,E,B}, we denote by δli : R
3K → R

3K

the characteristic function which has value 1 on class li
and 0 otherwise. Then the given test sample xi can be

approximated as

x̂i = DJδli(βi), (3)

where x̂i can be used for modeling estimation of clas-

sification. We propose to wrap the sparse representation

into the maximum a posterior probabilistic (MAP) model

by combing a Markov random field (MRF). The MAP

prediction is taken as the output label:

l̂i = argmax
li

p (li | xi), (4)

where l̂i ∈ {T,E,B} is the output label of the sample xi,

from the Bayes rule, we can obtain:

p (li | xi) =
p (xi | li ) p ( li )

p(xi)
∝ p (xi | li ) p ( li ), (5)

where p (xi | li ) is the likelihood function, p ( li ) is the prior

probability for the class label li and p (xi) is the density of

xi which is a constant given the sample xi.

We model the likelihood probability by evaluating the

distance between the reconstructed data and the original data

as follows:

p (xi | li ) ∝ exp(−R(xi, li)), R(xi, li) = ‖xi − x̂i‖2, (6)

Meanwhile, we use the MRF to model the prior probability

p ( li ) in Eq. 5 of the sample xi as follows:

p ( li ) ∝ exp (−
∑

j∈N (i)

Vi,j(li, lj) ),

Vi,j(li, lj) = c · exp (
−‖x̂i − x̂j‖2

σ2
) · (1− δ(li, lj)), (7)
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where N (i) is the spatial 4-neighborhood of pixel i, li and

lj are output labels of pixel i and pixel j, respectively, and

1−δ(li, lj) penalizes different class labels of adjacent pixels.

Vi,j(li, lj) is the spatial smoothness term which regulates the

degree of smoothness of the local intensity variation.

From Eq. 5, 6 and 7, we get the posterior probability as:

p (li | xi) ∝ exp (−R(xi, li)−
∑

j∈N (i)

Vi,j(li, lj) ), (8)

which is converted to the following by taking logarithm:

log p (li | xi) ∝ −(R(xi, li) +
∑

j∈N (i)

Vi,j(li, lj)), (9)

Denoting by L = [l1, ..., li, ..., lI ], the MAP problem can be

written into an energy minimizing problem:

min
L

I∑
i=1

R(xi, li) +
I∑

i=1

∑
j∈N (i)

Vi,j(li, lj). (10)

We adopt the graph cuts to approximately solve the mini-

mizing energy optimization problem by finding the minimal

cuts in a graph model with reference to the multi-label

optimization via α-expansion move in [8].

III. EXPERIMENTS

A. Dataset
To validate our method, we employed the BRATS 2012

high-grade brain tumor dataset of MICCAI Challenge, which

is consist of both synthetic dataset (25 training and 10 test

cases) and real dataset (20 training and 11 test cases). For

each subject, four modalities of MR volumes are available:

FLAIR, T1, T2 and T1C. In the pre-processing stage,

the volumes were linearly co-registered to the T1 contrast

images with skull stripped and intensity normalized to the

interval [0, 1]. The parameters were set as patch size of 7×7,

the dictionary size of K = 784 and the sparse factor of

λ = 0.15. To further boost the performance, we applied

largest connected component labeling for post-processing.

B. Evaluation on Synthetic Dataset
As the ground truth mask for test data is unavailable for

public downloading, we validated our model on the training

set with the leave-one-out strategy for visual evaluation. As

shown in Fig. 2, our method can accurately segment out the

brain tumor core and the surrounding edema tissue when

comparing with the ground truth.
Meanwhile, we evaluated our segmentation results on the

synthetic test dataset with the public online evaluation tool

provided by the challenge which is accessible to the ground

truth mask. The segmentation results were evaluated with

three metrics including dice similarity coefficient, specificity

and sensitivity1. The evaluation results shown in Table I

proved the effectiveness of our algorithm for segmenting

out the tumor and edema tissues.

1http://www2.imm.dtu.dk/projects/BRATS2012/evaluation.html

Figure 2. Examples of segmentation results on synthetic subjects. Each
column corresponds to one subject, from top to bottom are: T1, our results
and ground truth images.

Table I
SEGMENTATION RESULTS ON SYNTHETIC DATASET.

Metrics
Dice Specificy Sensitivity

edema tumor edema tumor edema tumor
mean 0.852 0.861 0.998 0.999 0.871 0.927

std 0.080 0.097 0.001 0.001 0.083 0.099

C. Evaluation on Real Dataset

Typical segmentation results on the real training dataset

are shown in Fig. 3. Visually, our results are very close

to the ground truth. The evaluation results in Table II

further demonstrate the validity of our algorithm. Despite

the intensity normalization during the pre-processing stage,

the inter-patients intensity variation of the real clinical data

still degraded the effectiveness of the learned dictionary, and

our algorithm failed on the cases of HG131 and HG137.

Table II
SEGMENTATION RESULTS ON REAL DATASET.

Metrics
Dice Specificy Sensitivity

edema tumor edema tumor edema tumor
mean 0.551 0.515 0.995 0.999 0.630 0.494

std 0.157 0.294 0.005 0.001 0.200 0.348

D. Comparison with State-of-the-art Approaches

We compared our method with the top four ranking

algorithms in MICCAI BRATS 2012 challenge [9]. These

algorithms are context-sensitive classification forests (CCF)

[10], hierarchical classification and regularization (HCR)

[11], hierarchical random walker (HRW) [12], Gabor and

markov random fields (GMRF) [13]. To make the compar-

ison more convincing, we employed the online published

challenge results2 of BRATS2012 which utilized the same

dataset and evaluation tool.

We compared three performance metrics on the high-

grade synthetic and real dataset in Table III and IV, respec-

tively. For synthetic data, it is observed that our method is

comparable in all the metrics to CCF which obtained the best

2http://www2.imm.dtu.dk/projects/BRATS2012/results.html
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Figure 3. Examples of segmentation results on real data. Each column
corresponds to one subject, from top to bottom are: T2, our results and
ground truth images.

Table III
COMPARISON OF DIFFERENT METHODS ON SYNTHETIC DATA.

Methods
Dice Specificy Sensitivity

edema tumor edema tumor edema tumor
CCF 0.850 0.869 0.999 0.999 0.851 0.970
HCR 0.785 0.779 0.999 0.999 0.789 0.809

GMRF 0.696 0.398 0.999 0.992 0.598 0.733
HRW 0.343 0.414 0.997 0.989 0.324 0.881
Ours 0.852 0.861 0.998 0.999 0.871 0.927

evaluation scores in challenge and our method outperforms

the other three methods in most metrics. For the real dataset,

our dice overlap is lower than CCF for the edema, but higher

than CCF for the tumor. Compared with the synthetic data,

the segmentation accuracy decreased upon the real data, due

to the inter-slices and and inter-patients intensity variation.

Nevertheless, our performance still achieved good results

compared to state-of-the-art algorithms.

IV. CONCLUSION

In this paper, we formulate the multimodal MR brain

tumor segmentation task as a three class (tumor, edema

and normal tissue) classification problem by a sparse-coding

based probabilistic model. Experimental results on both

synthetic and real patient datasets validated the efficacy of

our model. In the future, we will extend our model into

3D by training the joint dictionary with volume patches and

segment the target image into more classes.
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Table IV
COMPARISON OF DIFFERENT METHODS ON REAL DATA.

Methods
Dice Specificy Sensitivity

edema tumor edema tumor edema tumor
CCF 0.598 0.476 0.997 1 0.67 0.397
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HRW 0.539 0.337 0.983 0.998 0.63 0.359

GMRF 0.166 0.248 - - 0.056 0.527
Ours 0.551 0.515 0.995 0.999 0.63 0.494
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